3,902 research outputs found

    Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small non-coding RNAs affecting the expression of target genes via translational repression or mRNA degradation mechanisms. With the increasing availability of mRNA and miRNA expression data, it might be possible to assess functional targets using the fact that a miRNA might down-regulate its target mRNAs. In this work we computed the correlation of expression profiles between miRNAs and target mRNAs using the NCI-60 expression data. The aim is to investigate whether the correlations between miRNA and mRNA expression profiles, either positive or negative, can be used to assist the identification of functional miRNA-mRNA relationships.</p> <p>Results</p> <p>Predicted miRNA-mRNA interactions were taken from TargetScan 4.1 and miRBase release 5. Pearson correlation coefficients between the miRNA and the mRNA expression profiles were computed using NCI-60 data. The correlation coefficients were then subject to the Benjamini and Hochberg correction. Our results show that the percentage of TargetScan-predicted miRNA-mRNA interactions having negative correlation in expression profiles is higher than that of miRBase-predicted pairs. Using the experimentally validated miRNA targets listed in TarBase, genes involved in mRNA degradation show more negative correlations between miRNA and mRNA expression profiles, comparing with genes involved in translational repression. Furthermore, correlation analysis for miRNAs and mRNAs transcribed from the same genes shows that correlations of expression profiles between intronic miRNAs and host genes tend to be positive. Finally we found that a target gene might be down-regulated by more than one miRNAs sharing the same seed region.</p> <p>Conclusion</p> <p>Our results suggest that expression profiles can be used in the computational identification of functional miRNA-target associations. One can expect a higher chance of finding negatively correlated expression profiles for TargetScan-predicted interactions than for miRBase-predicted ones. With limited experimentally validated miRNA-target interactions, expression profiles can only serve as a supplementary role in finding interactions between miRNAs and mRNAs.</p

    Heterogeneous Graph Neural Networks for Fraud Detection and Explanation in Supply Chain Finance

    Get PDF
    It is a critical mission for financial service providers to discover fraudulent borrowers in a supply chain. The borrowers’ transactions in anongoing business are inspected to support the providers’ decision on whether to lend the money. Considering multiple participants in a supply chain business, the borrowers may use sophisticated tricks to cheat, making fraud detection challenging. In this work, we propose a multitask learning framework, MultiFraud, for complex fraud detection with reasonable explanation. The heterogeneous information from multi-view around the entities is leveraged in the detection framework based on heterogeneous graph neural networks. MultiFraud enables multiple domains to share embeddings and enhance modeling capabilities for fraud detection. The developed explainer provides comprehensive explanations across multiple graphs. Experimental results on five datasets demonstrate the framework’s effectiveness in fraud detection and explanation across domains

    How well do HapMap SNPs capture the untyped SNPs?

    Get PDF
    BACKGROUND: The recent advancement in human genome sequencing and genotyping has revealed millions of single nucleotide polymorphisms (SNP) which determine the variation among human beings. One of the particular important projects is The International HapMap Project which provides the catalogue of human genetic variation for disease association studies. In this paper, we analyzed the genotype data in HapMap project by using National Institute of Environmental Health Sciences Environmental Genome Project (NIEHS EGP) SNPs. We first determine whether the HapMap data are transferable to the NIEHS data. Then, we study how well the HapMap SNPs capture the untyped SNPs in the region. Finally, we provide general guidelines for determining whether the SNPs chosen from HapMap may be able to capture most of the untyped SNPs. RESULTS: Our analysis shows that HapMap data are not robust enough to capture the untyped variants for most of the human genes. The performance of SNPs for European and Asian samples are marginal in capturing the untyped variants, i.e. approximately 55%. Expectedly, the SNPs from HapMap YRI panel can only capture approximately 30% of the variants. Although the overall performance is low, however, the SNPs for some genes perform very well and are able to capture most of the variants along the gene. This is observed in the European and Asian panel, but not in African panel. Through observation, we concluded that in order to have a well covered SNPs reference panel, the SNPs density and the association among reference SNPs are important to estimate the robustness of the chosen SNPs. CONCLUSION: We have analyzed the coverage of HapMap SNPs using NIEHS EGP data. The results show that HapMap SNPs are transferable to the NIEHS SNPs. However, HapMap SNPs cannot capture some of the untyped SNPs and therefore resequencing may be needed to uncover more SNPs in the missing region

    Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines

    Get PDF
    BACKGROUND: Predicting the subcellular localization of proteins is important for determining the function of proteins. Previous works focused on predicting protein localization in Gram-negative bacteria obtained good results. However, these methods had relatively low accuracies for the localization of extracellular proteins. This paper studies ways to improve the accuracy for predicting extracellular localization in Gram-negative bacteria. RESULTS: We have developed a system for predicting the subcellular localization of proteins for Gram-negative bacteria based on amino acid subalphabets and a combination of multiple support vector machines. The recall of the extracellular site and overall recall of our predictor reach 86.0% and 89.8%, respectively, in 5-fold cross-validation. To the best of our knowledge, these are the most accurate results for predicting subcellular localization in Gram-negative bacteria. CONCLUSION: Clustering 20 amino acids into a few groups by the proposed greedy algorithm provides a new way to extract features from protein sequences to cover more adjacent amino acids and hence reduce the dimensionality of the input vector of protein features. It was observed that a good amino acid grouping leads to an increase in prediction performance. Furthermore, a proper choice of a subset of complementary support vector machines constructed by different features of proteins maximizes the prediction accuracy

    pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties

    Get PDF
    BACKGROUND: Protein subcellular localization is an important determinant of protein function and hence, reliable methods for prediction of localization are needed. A number of prediction algorithms have been developed based on amino acid compositions or on the N-terminal characteristics (signal peptides) of proteins. However, such approaches lead to a loss of contextual information. Moreover, where information about the physicochemical properties of amino acids has been used, the methods employed to exploit that information are less than optimal and could use the information more effectively. RESULTS: In this paper, we propose a new algorithm called pSLIP which uses Support Vector Machines (SVMs) in conjunction with multiple physicochemical properties of amino acids to predict protein subcellular localization in eukaryotes across six different locations, namely, chloroplast, cytoplasmic, extracellular, mitochondrial, nuclear and plasma membrane. The algorithm was applied to the dataset provided by Park and Kanehisa and we obtained prediction accuracies for the different classes ranging from 87.7% – 97.0% with an overall accuracy of 93.1%. CONCLUSION: This study presents a physicochemical property based protein localization prediction algorithm. Unlike other algorithms, contextual information is preserved by dividing the protein sequences into clusters. The prediction accuracy shows an improvement over other algorithms based on various types of amino acid composition (single, pair and gapped pair). We have also implemented a web server to predict protein localization across the six classes (available at )

    iHAP – integrated haplotype analysis pipeline for characterizing the haplotype structure of genes

    Get PDF
    BACKGROUND: The advent of genotype data from large-scale efforts that catalog the genetic variants of different populations have given rise to new avenues for multifactorial disease association studies. Recent work shows that genotype data from the International HapMap Project have a high degree of transferability to the wider population. This implies that the design of genotyping studies on local populations may be facilitated through inferences drawn from information contained in HapMap populations. RESULTS: To facilitate analysis of HapMap data for characterizing the haplotype structure of genes or any chromosomal regions, we have developed an integrated web-based resource, iHAP. In addition to incorporating genotype and haplotype data from the International HapMap Project and gene information from the UCSC Genome Browser Database, iHAP also provides capabilities for inferring haplotype blocks and selecting tag SNPs that are representative of haplotype patterns. These include block partitioning algorithms, block definitions, tag SNP definitions, as well as SNPs to be "force included" as tags. Based on the parameters defined at the input stage, iHAP performs on-the-fly analysis and displays the result graphically as a webpage. To facilitate analysis, intermediate and final result files can be downloaded. CONCLUSION: The iHAP resource, available at , provides a convenient yet flexible approach for the user community to analyze HapMap data and identify candidate targets for genotyping studies

    Poly[tris­(2,5-dimethyl­benzene-1,4-­dicarboxyl­ato)bis­(pyridine)trizinc(II)]

    Get PDF
    The asymmetric unit of the title polymeric compound, [Zn3(C10H8O4)3(C5H5N)2]n or [Zn3(dmbdc)3(py)2]n (dmbdc = 2,5-dimethyl­benzene­dicarboxyl­ate; py = pyridine) contains two Zn(II) ions, one of which is located on an inversion centre, one and a half 2,5-dimethyl­benzene­dicarboxyl­ate ligands and one pyridine ligand. Each ZnO6 octa­hedron is sandwiched between two ZnO4N square-pyramids, forming a trinuclear zinc secondary building unit (SBU); each SBU is further linked by six 2,5-dimethyl­benzene­dicarboxyl­ate ligands with six adjacent trinuclear zinc SBU’s, forming a two-dimensional layer structure with a (3,6) net. One of the three zinc ions is octa­hedrally coordinated and the other two are square-pyramidally coordinated. The coordination modes for 2,5-dimethyl­benzene­dicarboxyl­ates are bis­(bidentate) or bidentate-tridentate

    Difference in imipenem, meropenem, sulbactam, and colistin nonsusceptibility trends among three phenotypically undifferentiated Acinetobacter baumannii complex in a medical center in Taiwan, 1997–2007

    Get PDF
    BackgroundTo determine whether the susceptibilities and the trends of nonsusceptibility of imipenem, meropenem, sulbactam, and colistin differed among Acinetobacter baumannii, Acinetobacter genomic species 3 (AGS 3), and Acinetobacter genomic species 13TU (AGS 13TU) over 11 years.MethodsA total of 1,039 nonduplicate blood isolates of A baumannii complex from bacteremic patients between 1997 and 2007 were collected at Taipei Veterans General Hospital and were identified to the species level using a multiplex polymerase chain reaction method and sequence analysis of 16S–23S intergenic spacer. The minimal inhibitory concentrations of antibiotics were determined by the agar dilution method.ResultsThe nonsusceptibility rates of carbepenems and sulbactam were highest in A baumannii, which also showed a trend toward increasing rate of carbapenems nonsusceptibility over the 11-year period of the study. AGS 13TU had the highest nonsusceptible rate to colistin, comparably increasing trend of carbapenem nonsusceptiblity as that of A baumannii, and is the only species with increasing sulbactam nonsusceptibility. AGS 3 had the lowest rate of nonsusceptibility to all four antimicrobial agents.ConclusionAlthough A baumannii had the highest nonsusceptibility rate to imipenem, meropenem, and sulbactam over the years, the higher rate of colistin nonsusceptibility and the emergence of nonsusceptibility of carbapenems and sulbactam in AGS 13TU suggested that this species might cause a great problem in the near future
    corecore